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Abstract. Computational photography combines plentiful computing,
digital sensors, modern optics, actuators, and smart lights to escape the
limitations of traditional cameras, enables novel imaging applications and
simplifies many computer vision tasks. However, a majority of current
Computational photography methods involves taking multiple sequential
photos by changing scene parameters and fusing the photos to create a
richer representation. Epsilon photography is concerned with synthesiz-
ing omnipictures and proceeds by multiple capture single image paradigm
(MCSI).The goal of Coded computational photography is to modify the
optics, illumination or sensors at the time of capture so that the scene
properties are encoded in a single (or a few) photographs. We describe
several applications of coding exposure, aperture, illumination and sens-
ing and describe emerging techniques to recover scene parameters from
coded photographs.
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1 Introduction

Computational photography combines plentiful computing, digital sensors, mod-
ern optics, actuators, and smart lights to escape the limitations of traditional
cameras, enables novel imaging applications and simplifies many computer vi-
sion tasks. Unbounded dynamic range, variable focus, resolution, and depth of
field, hints about shape, reflectance, and lighting, and new interactive forms of
photos that are partly snapshots and partly videos are just some of the new
applications found in Computational photography.

In this paper, we discuss Coded photography which involves encoding of the
photographic signal and post-capture decoding for improved scene analysis. With
film-like photography, the captured image is a 2D projection of the scene. Due to
limited capabilities of the camera, the recorded image is a partial representation
of the view. Nevertheless, the captured image is ready for human consumption:
what you see is what you almost get in the photo.
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In Coded photography, the goal is to achieve a potentially richer represen-
tation of the scene during the encoding process. In some cases, Computational
photography reduces to Epsilon photography, where the scene is recorded via
multiple images, each captured by epsilon variation of the camera parameters.
For example, successive images (or neighboring pixels) may have a different ex-
posure, focus, aperture, view, illumination, or instant of capture. Each setting
allows recording of partial information about the scene and the final image is
reconstructed from these multiple observations. In Coded computational photog-
raphy, the recorded image may appear distorted or random to a human observer.
But the corresponding decoding recovers valuable information about the scene.
Less is more in Coded photography. By blocking light over time or space, we
can preserve more details about the scene in the recorded single photograph. In
this paper we look at four specific examples:

1. Coded exposure: By blocking light in time, by fluttering the shutter open
and closed in a carefully chosen binary sequence, we can preserve high spatial
frequencies of fast moving objects to support high quality motion deblurring.

2. Coded aperture optical heterodyning: By blocking light near the sensor
with a sinusoidal grating mask, we can record 4D light field on a 2D sensor.
And by blocking light with a mask at the aperture, we can extend the depth
of field and achieve full resolution digital refocussing.

3. Coded illumination: By observing blocked light at silhouettes, a multi-
flash camera can locate depth discontinuities in challenging scenes without
depth recovery.

4. Coded sensing: By sensing intensities with lateral inhibition, a gradient
sensing camera can record large as well as subtle changes in intensity to
recover a high-dynamic range image.

We describe several applications of Coding exposure, aperture, illumination
and sensing and describe emerging techniques to recover scene parameters from
coded photographs. But first, we give a introductory overview of the concepts
involved in light fields.

1.1 What is a light field?

The light field is a function that describes the amount of light traveling in every
direction through every point in space [17]. In geometric optics, the fundamental
carrier of light is a ray. The measure for the amount of light traveling along a
ray is radiance. The radiance along all such rays in a region of three-dimensional
space illuminated by an unchanging arrangement of lights is called the plenoptic
function. The plenoptic illumination function is an idealized function used in
computer vision and computer graphics to express the image of a scene from
any possible viewing position at any viewing angle at any point in time. Since
rays in space can be parameterized by three spatial coordinates, x, y and z and
two angles θ and φ it is a five-dimensional function [17].
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Fig. 1. A ray in 3D space is specified by its position (x, y, z) and direction (θ, φ).

The 4D light field Radiance along a ray remains constant if there are no
blockers. If we restrict ourselves to locations outside the convex hull of an ob-
ject, then we can measure the plenoptic function easily using a digital camera.
Moreover, in this case the function contains redundant information, because the
radiance along a ray remains constant from point to point along its length. In
fact, the redundant information is exactly one dimension, leaving us with a four-
dimensional function. Parry Moon dubbed this function the photic field, while
researchers in computer graphics call it the 4D light field or Lumigraph [12],
[13]. Formally, the 4D light field is defined as radiance along rays in empty space.

Most commonly, the set of rays in a light field can be parameterized using
the two-plane parametrization. While this parametrization cannot represent all
rays, for example rays parallel to the two planes if the planes are parallel to
each other, it has the advantage of relating closely to the analytic geometry of
perspective imaging. A light field parameterized this way is sometimes called a
light slab [17].

Fig. 2. The two plane parametrization of the 4D light field: using pairs of points on two
planes in any general position to represent the flow of light through an empty region
of three-dimensional space [17].
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4D reflectance field The bidirectional reflectance distribution function (BRDF)
is a 4-dimensional function that defines how light is reflected at an opaque sur-
face [18]. The function takes an incoming light direction, and outgoing direction,
both defined with respect to the surface normal and returns the ratio of reflected
radiance exiting along the outgoing direction to the irradiance incident on the
surface from incoming direction. Note that each direction is itself parameterized
by azimuth angle and elevation, therefore the BRDF as a whole is 4-dimensional.
As a further intuitive illustration [16] of 4D light fields imagine a convex enclosure
of a 3D scene and an inward-facing ray camera at every surface point. Pick the
outgoing rays you need for any camera outside the convex enclosure. The 2D
surface of cameras and the 2D ray set for each camera gives rise to the 4D set of
rays (4D light field of Lumigraph). When the similar idea is applied to the 4D
set of incoming rays it comprises the 4D illumination field. Together, they give
rise to the 8D reflectance field.

Fig. 3. When we measure all the light rays going out of the enclosure, it comprises of
the 4D light field (figure from [16])

1.2 Film-like photography

Photography is the process of making pictures by, literally, drawing with light or
recording the visually meaningful changes in the light leaving a scene. This goal
was established for film photography about 150 years ago.

Currently, digital photography is electronically implemented film photogra-
phy, refined and polished to achieve the goals of the classic film camera which
were governed by chemistry, optics, mechanical shutters. Film-like photogra-
phy presumes (and often requires) artful human judgment, intervention, and
interpretation at every stage to choose viewpoint, framing, timing, lenses, film
properties, lighting, developing, printing, display, search, index, and labelling.

In this article we plan to explore a progression away from film and film-
like methods to something more comprehensive that exploits plentiful low-cost
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Fig. 4. When we measure all the light rays coming into the enclosure, it comprises of
the 4D illumination field (figure from [16])

Fig. 5. Taken together, the 4D light field and the 4D illumination field give
rise to the 8D reflectance field (Figure from [16]). Also define ratio Rij =
Outgoing rayi/Incoming rayj

computing and memory with sensors, optics, probes, smart lighting and com-
munication.

1.3 What is computational photography?

Computational photography (CP) is an emerging field. We don’t know where
it will end up, we can’t yet set its precise, complete definition, nor make a
reliably comprehensive classification. But here is the scope of what researchers
are currently exploring in this field.

– Computational photography attempts to record a richer visual experience,
captures information beyond just a simple set of pixels and makes the recorded
scene representation far more machine readable.

– It exploits computing, memory, interaction and communications to overcome
long-standing limitations of photographic film and camera mechanics that
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have persisted in film-style digital photography, such as constraints on dy-
namic range, depth of field, field of view, resolution and the extent of scene
motion during exposure.

– It enables new classes of recording the visual signal such as the moment,
shape boundaries for non-photorealistic depiction [1] , foreground versus
background mattes, estimates of 3D structure, relightable photos and inter-
active displays that permit users to change lighting, viewpoint, focus, and
more, capturing some useful, meaningful fraction of the light field of a scene,
a 4-D set of viewing rays.

– It enables synthesis of impossible photos that could not have been captured
at a single instant with a single camera, such as wrap-around views (multiple-
center-of-projection images), fusion of time-lapsed events [1], the motion-
microscope (motion magnification), video textures and panoramas. They also
support impossible physical camera movements such as the freeze effect (in
the movie Matrix) sequence recorded with multiple cameras with staggered
exposure times.

– It encompass previously exotic forms of scientific imaging and data gathering
techniques e.g. from astronomy, microscopy, and tomography.

1.4 Elements of computational photography

Traditional film-like photography involves a lens, a 2D planar sensor and a pro-
cessor that converts sensed values into an image. In addition, the photography
may involve external illumination from point sources (e.g. flash units) and area
sources (e.g. studio lights). Computational photography generalizes the following
four elements.

1. Generalized optics: Each optical element is treated as a 4D ray-bender
that modifies a light field. The incident 4D light field for a given wavelength
is transformed into a new 4D light field. The optics may involve more than
one optical axis [15]. In some cases the perspective foreshortening of ob-
jects based on distance may be modified using wavefront coded optics [14].
In recent lens-less imaging methods and Coded aperture imaging used for
gamma-ray and X-ray astronomy, the traditional lens is missing entirely. In
some cases optical elements such as mirrors outside the camera adjust the
linear combinations of ray bundles that reach the sensor pixel to adapt the
sensor to the viewed scene.

2. Generalized sensors: All light sensors measure some combined fraction
of the 4D light field impinging on it, but traditional sensors capture only
a 2D projection of this light field. Computational photography attempts to
capture more; a 3D or 4D ray representation using planar, non-planar or
even volumetric sensor assemblies. For example, a traditional out-of-focus
2D image is the result of a capture-time decision: each detector pixel gathers
light from its own bundle of rays that do not converge on the focused object.
But a plenoptic Camera [9], [10] subdivides these bundles into separate
measurements. Computing a weighted sum of rays that converge on the
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objects in the scene creates a digitally refocused image, and even permits
multiple focusing distances within a single computed image. Generalizing
sensors can extend their dynamic range [2] and wavelength selectivity as
well. While traditional sensors trade spatial resolution for color measurement
(wavelengths) using a Bayer grid or red, green or blue filters on individual
pixels, some modern sensor designs determine photon wavelength by sensor
penetration, permitting several spectral estimates at a single pixel location.

3. Generalized reconstruction: Conversion of raw sensor outputs into pic-
ture values can be much more sophisticated. While existing digital cameras
perform de-mosaicking, (interpolate the Bayer grid), remove fixed-pattern
noise, and hide dead pixel sensors, recent work in computational photogra-
phy can do more. Reconstruction might combine disparate measurements
in novel ways by considering the camera intrinsic parameters used during
capture. For example, the processing might construct a high dynamic range
scene from multiple photographs from coaxial lenses, from sensed gradients,
[2] or compute sharp images of a fast moving object from a single image taken
by a camera with a fluttering shutter [3]. Closed-loop control during photog-
raphy itself can also be extended, exploiting traditional cameras’ exposure
control, image stabilizing, and focus, as new opportunities for modulating
the scene’s optical signal for later decoding.

4. Computational illumination: Photographic lighting has changed very lit-
tle since the 1950’s: with digital video projectors, servos, and device-to-device
communication, we have new opportunities to control the sources of light
with as much sophistication as we use to control our digital sensors. What
sorts of spatio-temporal modulations for light might better reveal the visually
important contents of a scene? Harold Edgerton showed high-speed strobes
offered tremendous new appearance-capturing capabilities; how many new
advantages can we realize by replacing the dumb flash units, static spot lights
and reflectors with actively controlled spatio-temporal modulators and op-
tics? Already we can capture occluding edges with multiple flashes [1],
exchange cameras and projectors by Helmholz reciprocity, gather relightable
actor’s performances with light stages and see through muddy water with
coded-mask illumination. In every case, better lighting control during cap-
ture allows one to build richer representations of photographed scenes.

2 Sampling dimensions of imaging

2.1 Epsilon photography for optimizing film-like cameras

Think of film cameras at their best as defining a box in the multi-dimensional
space of imaging parameters. The first, most obvious thing we can do to im-
prove digital cameras is to expand this box in every conceivable dimension. This
effort reduces Computational photography to Epsilon photography, where the
scene is recorded via multiple images, each captured by epsilon variation of the
camera parameters. For example, successive images (or neighboring pixels) may
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Fig. 6. Elements of Computational photography

have different settings for parameters such as exposure, focus, aperture, view,
illumination, or the instant of capture. Each setting allows recording of partial
information about the scene and the final image is reconstructed from these
multiple observations. Epsilon photography is thus concatenation of many such
boxes in parameter space; multiple film-style photos computationally merged to
make a more complete photo or scene description. While the merged photo is
superior, each of the individual photos is still useful and comprehensible on its
own, without any of the others. The merged photo contains the best features
from all of them.

1. Field of view: A wide field of view panorama is achieved by stitching and
mosaicking pictures taken by panning a camera around a common center of
projection or by translating a camera over a near-planar scene.

2. Dynamic range: A high dynamic range image is captured by merging pho-
tos at a series of exposure values [6]

3. Depth of field: All-in-focus image is reconstructed from images taken by
successively changing the plane of focus.

4. Spatial resolution: Higher resolution is achieved by tiling multiple cameras
(and mosaicking individual images) or by jittering a single camera.

5. Wavelength resolution: Traditional cameras sample only 3 basis colors.
But multi-spectral (multiple colors in the visible spectrum) or hyper-spectral
(wavelengths beyond the visible spectrum) imaging is accomplished by tak-
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ing pictures while successively changing color filters in front of the camera,
using tunable wavelength filters or using diffraction gratings.

6. Temporal resolution: High speed imaging is achieved by staggering the
exposure time of multiple low-frame rate cameras. The exposure durations
of individual cameras can be non-overlapping or overlapping.

Taking multiple images under varying camera parameters can be achieved
in several ways. The images can be taken with a single camera over time. The
images can be captured simultaneously using assorted pixels where each pixel is
a tuned to a different value for a given parameter [5]. Simultaneous capture of
multiple samples can also be recorded using multiple cameras, each camera hav-
ing different values for a given parameter. Two designs are currently being used
for multi-camera solutions: a camera array and single-axis multiple parameter
(co-axial) cameras [8].

Fig. 7. Blocking light to achieve Coded photography. (Left) Using a 1-D code in time
to block and unblock light over time, a coded exposure photo can reversibly encode
motion blur ( [3]). (Right) Using a 2-D code in space to block parts of the light via a
masked aperture, a coded aperture photo can reversibly encode defocus blur ( [4])

2.2 Coded photography

There is much more beyond the best possible film camera. We can virtualize the
notion of the camera itself if we consider it as a device that collects bundles of
rays, each ray with its own wavelength spectrum and exposure duration.

Coded photography is a notion of an out-of-the-box photographic method,
in which individual (ray) samples or data sets may or may not be comprehen-
sible as images without further decoding, re-binning or reconstruction. Coded
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aperture techniques, inspired by work in astronomical imaging, try to preserve
high spatial frequencies so that out of focus blurred images can be digitally re-
focused [4]. By coding illumination, it is possible to decompose radiance in a
scene into direct and global components. Using a Coded exposure technique, one
can rapidly flutter open and close the shutter of a camera in a carefully chosen
binary sequence, to capture a single photo. The fluttered shutter encoded the
motion in the scene in the observed blur in a reversible way. Other examples
include confocal images and techniques to recover glare in the images.

We may be converging on a new, much more capable box of parameters in
computational photography that we don’t yet recognize; there is still quite a bit
of innovation to come! In the rest of the article, we survey recent techniques that
exploit exposure, focus, active illumination and sensors.

Fig. 8. An overview of projects. Coding in time or space, coding the incident active
illumination and coding the sensing pattern.

3 Coded exposure

In a conventional single-exposure photograph, moving objects or moving cameras
cause motion blur. The exposure time defines a temporal box filter that smears
the moving object across the image by convolution. This box filter destroys
important high-frequency spatial details so that deblurring via deconvolution
becomes an ill-posed problem. We have proposed to flutter the camera’s shutter
open and closed during the chosen exposure time with a binary pseudo-random
sequence, instead of leaving it open as in a traditional camera [3]. The flutter
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changes the box filter to a broad-band filter that preserves high-frequency spatial
details in the blurred image and the corresponding deconvolution becomes a well-
posed problem.

Results on several challenging cases of motion-blur removal including outdoor
scenes, extremely large motions, textured backgrounds and partial occluders
were presented. However, the authors assume that PSF (Point spread function)
is given or is obtained by simple user interaction. Since changing the integra-
tion time of conventional CCD cameras is not feasible, an external ferro-electric
shutter is placed in front of the lens to code the exposure. The shutter is driven
opaque and transparent according to the binary signals generated from PIC [20]
using the pseudo-random binary sequence.

Fig. 9. The flutter shutter camera. The Coded exposure is achieved by fluttering the
shutter open and closed. Instead of a mechanical movement of the shutter, we used a
ferro-electric LCD in front of the lens. It is driven opaque and transparent according
to the desired binary sequence.

4 Coded aperture and optical heterodyning

Can we capture additional information about a scene by inserting a patterned
mask inside a conventional camera? We use a patterned attenuating mask to
encode the light field entering the camera. Depending on where we put the
mask, we can effect desired frequency domain modulation of the light field. If
we put the mask near the lens aperture, we can achieve full resolution digital
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refocussing. If we put the mask near the sensor, we can recover a 4D light field
without any additional lenslet array.

Fig. 10. Encoded blur camera, i.e. with mask in the aperture, can preserve high spatial
images frequencies in the defocus blur. Notice the glint in the eye. In the misfocused
photo, on the left, the bright spot appears blurred with the bokeh [21] of the chosen
aperture (shown in the inset). In the deblurred result, on the right, the details on the
eye are correctly recovered.

Coded aperture imaging has been historically used in radar (SAR) [19]. Ren
Ng et. al. have developed a camera that can capture the 4D light field incident
on the image sensor in a single photographic exposure [10]. This is achieved by
inserting a microlens array between the sensor and main lens, creating a plenop-
tic camera. Each microlens measures not just the total amount of light deposited
at that location, but how much light arrives along each ray. By re-sorting the
measured rays of light to where they would have terminated in slightly differ-
ent, synthetic cameras, one can compute sharp photographs focused at different
depths. A linear increase in the resolution of images under each microlens results
in a linear increase in the sharpness of the refocused photographs. This prop-
erty allows one to extend the depth of field of the camera without reducing the
aperture, enabling shorter exposures and lower image noise.

Our group has shown that it is also possible to create a plenoptic camera using
a patterned mask instead of a lenslet array. The geometric configurations remains
nearly identical [4]. The method is known as spatial optical heterodyning. Instead
of remapping rays in 4D using microlens array so that they can be captured on
a 2D sensor, spatial optical heterodyning remaps frequency components of the
4D light field so that the frequency components can be recovered from Fourier
transform of the captured 2D image. In microlens array based design, each pixel
effectively records light along a single ray bundle. With patterned masks, each
pixel records a linear combination multiple ray-bundles. By carefully coding the
linear combination, the coded heterodyning method can reconstruct the values
of individual ray-bundles.
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This is reversible modulation of 4D light field by inserting a patterned planar
mask in the optical path of a lens based camera. We can reconstruct the 4D light
field from a 2D camera image. The patterned mask attenuates light rays inside
the camera instead of bending them, and the attenuation recoverably encodes
the ray on the 2D sensor. Our mask-equipped camera focuses just as a traditional
camera might to capture conventional 2D photos at full sensor resolution, but
the raw pixel values also hold a modulated 4D light field. The light field can be
recovered by rearranging the tiles of the 2D Fourier transform of sensor values
into 4D planes, and computing the inverse Fourier transform.

Fig. 11. Coding Light Field entering a camera via a mask.

5 Coded illumination

By observing blocked light at silhouettes, a multi-flash camera can locate depth
discontinuities in challenging scenes without depth recovery. We used a multi-
flash camera to find the silhouettes in a scene [1]. We take four photos of an
object with four different light positions (above, below, left and right of the
lens). We detect shadows cast along the depth discontinuities and use them
to detect depth discontinuities in the scene. The detected silhouettes are then
used for stylizing the photograph and highlighting important features. We also
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demonstrate silhouette detection in a video using a repeated fast sequence of
flashes.

Fig. 12. Multi-flash Camera for Depth Edge Detection. (Left) A camera with four
flashes. (Right) Photos due to individual flashes, highlighted shadows and epipolar
traversal to compute the single pixel depth edges.

6 High dynamic range using a gradient camera

A camera sensor is limited in the range of highest and lowest intensities it can
measure. To capture the high dynamic range, one can adaptively set the exposure
the sensor so that the signal to noise ratio is high over the entire image, including
in the the dark and brightly lit regions. One approach for faithfully recording the
intensities in a high dynamic range scenes is to capture multiple images using
different exposures, and then to merge these images. The basic idea is that when
longer exposures are used, dark regions are well exposed but bright regions are
saturated. On the other hand, when short exposures are used, dark regions are
too dark but bright regions are well imaged. If exposure varies and multiple
pictures are taken of the same scene, value of a pixel can be taken from those
images where it’s neither too dark nor saturated. This type of approach is often
referred to as exposure bracketing.

At the sensor level, various approaches have also been proposed for high
dynamic range imaging. One type of approach is to use multiple sensing ele-
ments with different sensitivities within each cell. Multiple measurements are
made from the sensing elements, and they are combined on-chip before a high
dynamic range image is read out from the chip. Spatial sampling rate is lowered
in these sensing devices, and spatial resolution is sacrificed. Another type of ap-
proach is to adjust the well capacity of the sensing elements during photocurrent
integration but this gives higher noise.
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By sensing intensities with lateral inhibition, a gradient sensing camera can
record large as well as subtle changes in intensity to recover a high-dynamic
range image. By sensing difference between neighboring pixels instead of ac-
tual intensities, our group has shown that a Gradient Camera can record large
global variations in intensity [2]. Rather than measure absolute intensity values
at each pixel, this proposed sensor measures only forward differences between
them, which remain small even for extremely high-dynamic range scenes, and re-
constructs the sensed image from these differences using Poisson solver methods.
This approach offers several advantages: the sensor is nearly impossible to over-
or under-expose, yet offers extremely fine quantization, even with very modest
A/D convertors (e.g. 8 bits). The thermal and quantization noise occurs in the
gradient domain, and appears as low frequency cloudy noise in the reconstruc-
tion, rather than uncorrelated high-frequency noise that might obscure the exact
position of scene edges.

7 Conclusion

As these examples indicate, we have scarcely begun to explore the possibil-
ities offered by combining computation, 4D modeling of light transport, and
novel optical systems. Nor have such explorations been limited to photography
and computer graphics or computer vision. Microscopy, tomography, astronomy
and other optically driven fields already contain some ready-to-use solutions to
borrow and extend. If the goal of photography is to capture, reproduce, and
manipulate a meaningful visual experience, then the camera is not sufficient to
capture even the most rudimentary birthday party. The human experience and
our personal viewpoint is missing. Computational Photography can supply us
with visual experiences, but can’t decide which one’s matter most to humans.
Beyond coding the first order parameters like exposure, focus, illumination and
sensing, maybe the ultimate goal of Computational Photography is to encode
the human experience in the captured single photo.
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