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Figure 1: Our heterodyne light field camera provides 4D light field and full-resolution focused image simultaneously. (First Column) Raw
sensor image. (Second Column) Scene parts which are in-focus can be recovered at full resolution. (Third Column) Inset shows fine-scale
light field encoding (top) and the corresponding part of the recovered full resolution image (bottom). (Last Column) Far focused and near
focused images obtained from the light field.

Abstract
We describe a theoretical framework for reversibly modulating 4D
light fields using an attenuating mask in the optical path of a lens
based camera. Based on this framework, we present a novel design
to reconstruct the 4D light field from a 2D camera image without
any additional refractive elements as required by previous light field
cameras. The patterned mask attenuates light rays inside the camera
instead of bending them, and the attenuation recoverably encodes
the rays on the 2D sensor. Our mask-equipped camera focuses just
as a traditional camera to capture conventional 2D photos at full
sensor resolution, but the raw pixel values also hold a modulated
4D light field. The light field can be recovered by rearranging the
tiles of the 2D Fourier transform of sensor values into 4D planes,
and computing the inverse Fourier transform. In addition, one can
also recover the full resolution image information for the in-focus
parts of the scene.

We also show how a broadband mask placed at the lens enables us
to compute refocused images at full sensor resolution for layered
Lambertian scenes. This partial encoding of 4D ray-space data en-
ables editing of image contents by depth, yet does not require com-
putational recovery of the complete 4D light field.

1. Introduction
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The trend in computational photography is to capture more optical
information at the time of capture to allow greater post-capture im-
age processing abilities. The pioneering work of Ng et al. [2005]
has shown a hand-held plenoptic camera where the user can adjust
focus and aperture settings after the picture has been taken. The key
idea is to capture the entire 4D light field entering via the lens and
incident on the camera sensor. In a conventional camera, the sensed
2D image is a 2D projection of the 4D light field [Ng 2005] and it
is not possible to recover the entire 4D light field. Using a clever
arrangement of optical elements, it is possible to re-bin the 4D rays
and capture them using a 2D sensor [Georgiev et al. 2006; Ng et al.
2005]. These lens arrays perform the optical implementation of the
two plane parameterization of the light field [Levoy and Hanrahan
1996; Gortler et al. 1996].

However, optical re-binning of rays forces a fixed and permanent
tradeoff between spatial and angular resolution via the array of
lenses. In this paper, we describe novel hybrid imaging/light field
camera designs that are much more easily adjustable; users change
a single attenuating mask rather than arrays of lenses. We call this
Dappled Photography, as the mask shadows the incoming light and
dapples the sensor. We exploit the fact that light rays can be linearly
combined: rather than sense each 4D ray on its own pixel sensor,
our design allows sensing linearly independent weighted sums of
rays, rays combined in a coded fashion that can be separated by
later decoding. Our mapping from 4D ray space to a 2D sensor ar-
ray exploits heterodyning methods [Fessenden 1908] that are best
described in the frequency domain. By exploiting the modulation
and convolution theorems [Oppenheim et al. 1999] in the frequency
domain, we derive simple attenuating mask elements that can be
placed in the camera’s optical path to achieve Fourier domain re-
mapping. No additional lenses are necessary, and we can compute
decoded rays as needed in software.

1.1. Contributions

We present a set of techniques to encode and manipulate useful
portions of a 4D light field.

• We derive a 4D Fourier domain description of the effect of
placing an attenuating mask at any position within a conven-



tional 2D camera.

• We identify a new class of 4D cameras that re-map the Fourier
transform of 4D ray space onto 2D sensors. Previous 4D cam-
eras used 2D lens arrays to project 4D ray-space itself rather
than it’s Fourier transform.

• We achieve this frequency domain re-mapping using a sin-
gle transmissive mask, and our method does not require addi-
tional optical elements such as lens arrays.

• We analyze defocus blur as a special case of this frequency
domain re-mapping and demonstrate that a broadband mask
placed at the aperture can preserve high spatial frequencies in
defocused images.

Our analysis leads to two camera designs:

Heterodyne Light Field Camera: The first design is based on the
modulation theorem in the 4D frequency domain. We capture the
light field using a 4D version of the method known as ’heterodyn-
ing’ in radio. We create spectral tiles of the light field in the 4D
frequency domain by placing high-frequency sinusoidal pattern be-
tween the sensor and the lens of the camera. To recover the 4D
light field, we take the Fourier transform of the 2D sensed signal,
re-assemble the 2D tiles into a 4D stack of planes, and take the in-
verse Fourier transform. Unlike previous 4D cameras that rely on
lens arrays, this hybrid imaging/light field design does not force
resolution tradeoffs for in-focus parts of the scene. The mask does
not bend rays as they travel from scene to sensor, but only attenu-
ates them in a fine, shadow-like pattern. If we compensate for this
shadowing, we retain a full-resolution 2D image of the parts of the
scene that were in focus, as well as the lower-resolution 4D light
field we recover by Fourier-domain decoding. A prototype for this
design is shown in Figure 2.

Encoded Blur Camera: The second design is based on the convo-
lution theorem in the frequency domain. By placing a broadband
mask in the lens aperture of a conventional 2D camera (Figure 2),
we encode the defocus blur to preserve high spatial frequencies
which can be recovered by image deblurring. We show how to
computationally refocus the image at different depths for layered
Lambertian scenes at full-resolution. We show that this computed
refocusing is a special case of 4D re-mapping in the frequency do-
main that does not require measurement of the entire 4D light field,
allowing us to avoid its huge resolution penalties.

For both designs, we show optimality criteria of the mask pattern
and describe a procedure for computing highly efficient mask.

1.2. Benefits and Limitations

Mask-based hybrid imaging/light field cameras offer several advan-
tages over previous methods. An attenuating mask is far simpler
and less costly than lenses or lens arrays, and avoid errors such as
spherical, chromatic aberration, coma, and mis-alignment. Sim-
pler mounts and flexible masks may allow camera designs that of-
fer user-selectable masks; photographers could then select any de-
sired tradeoff in angle vs. spatial resolution. The design of Ng et
al. [2005] matches main-lens aperture (f-stop) to the micro-lens ar-
ray near the detector to avoid gaps or overlaps in their coverage of
the image sensor; mask-only designs avoid these concerns.

Our mask based designs also impose limitations. Masks absorb
roughly 50% of usable light that enters the lens. To counter this
loss, we show that masks allow use of much larger apertures, up to
a factor of 7 for the second design. Masks effectively reduce the
lens aperture, inducing a proportional increase in blur from diffrac-
tion. This blur reduces our ability to compute refocused images by
adding masks to diffraction-limited systems such as microscopes.
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Figure 2: Prototype camera designs. (Top Left) Heterodyne light
field camera holds a narrowband 2D cosine mask (shown in bottom
left) near the view camera’s line-scan sensor. (Top Right) Encoded
blur camera holds a coarse broadband mask (shown in bottom right)
in the lens aperture.

Our computed refocusing method based on image deblurring suf-
fers from deconvolution noise, but we show that typical noise per-
formance is 40 db better than conventional deconvolution of images
taken with an open aperture of the same size.

1.3. Related Work

Light Field Acquisition: Integral Photography [Lippmann 1908]
was first proposed almost a century ago to undo the directional inte-
gration of all rays arriving at one point on a film plane or sensor, and
instead measure each incoming direction separately to estimate the
entire 4D function. For a good survey of these first integral cameras
and its variants, see [Okano et al. 1999; Martnez-Corral et al. 2004;
Javidi and Okano 2002]. The concept of the 4D light field as a rep-
resentation of all rays of light in free-space was proposed by Levoy
and Hanrahan [1996] and Gortler et al. [1996]. While both created
images from virtual viewpoints, Levoy and Hanrahan [1996] also
proposed computing images through a virtual aperture, but a practi-
cal method for computing such images was not demonstrated until
the thorough study of 4D interpolation and filtering by Isaksen et
al. [2000]. Similar methods have also been called synthetic aper-
ture photography in more recent research literature [Levoy et al.
2004; Vaish et al. 2004].

To capture 4D radiance onto a 2D sensor, following two approaches
are popular. The first approach uses an array of lenses to capture
the scene from an orderly grid of viewpoints, and the image formed
behind each lens provides an orderly grid of angular samples to pro-
vide a result similar to integral photography [Ives 1928; Lippmann
1908]. Instead of fixed lens arrays, Wilburn et al. [2005] perfected
an optically equivalent configuration of individual digital cameras.
Georgiev et al. [2006] and Okano et al. [1997] place an array of pos-
itive lenses (aided by prisms in [Georgiev et al. 2006]) in front of
a conventional camera. The second approach places a single large
lens in front of an array of micro-lenses treating each sub-lens for
spatial samples. These plenoptic cameras by Adelson et al. [1992]
and Ng et al. [2005] form an image on the array of lenslets, each
of which creates an image sampling the angular distribution of ra-
diance at that point. This approach swaps the placement of spatial
and angular samples on the image plane. Both these approaches
trade spatial resolution for the ability to resolve angular differences.
They require very precise alignment of microlenses with respect to



sensor.

Our mask-based heterodyne light field camera is conceptually dif-
ferent from previous camera designs in two ways. First, it uses non-
refractive optics, as opposed to refractive optics such as microlens
array [Ng et al. 2005]. Secondly, while previous designs sample in-
dividual rays on the sensor, mask-based design samples linear com-
bination of rays in Fourier space. Our approach also trades spatial
resolution for angular resolution, but the 4D radiance is captured us-
ing information-preserving coding directly in the Fourier domain.
Moreover, we retain the ability to obtain full resolution information
for parts of the scene that were in-focus at capture time.

Coded Imaging: In astronomy, coded aperture imaging [Skinner
1988] is used to overcome the limitations of a pinhole camera.
Modified Uniformly Redundant Arrays (MURA) [Gottesman and
Fenimore 1989] are used to code the light distribution of distant
stars. A coded exposure camera [Raskar et al. 2006] can preserve
high spatial frequencies in a motion-blurred image and make the
deblurring process well-posed. Other types of imaging modulators
include mirrors [Fergus et al. 2006], holograms [Sun and Barbas-
tathis 2005], stack of light attenuating layers [Zomet and Nayar
2006] and digital micro-mirror arrays [Nayar et al. 2006]. Previous
work involving lenses and coded masks is rather limited. Hiura &
Matsuyama [1998] placed a mask with four pin holes in front of the
main lens and estimate depth from defocus by capturing multiple
images. However, we capture a single image and hence lack the
ability of compute depth at every pixel from the information in de-
focus blur. Nayar & Mitsunaga [2000] place an optical mask with
spatially varying transmittance close to the sensor for high dynamic
range imaging.

Wavefront Coding [Dowski and Cathey 1995; Dowski and John-
son 1999; van der Gracht et al. 1996] is another technique to achieve
extended Depth of Field (DOF) that use aspheric lenses to produce
images with a depth-independent blur. While their results in pro-
ducing extended depth of field images are compelling, their design
cannot provide a light field. Our design provides greater flexibil-
ity in image formation since we just use a patterned mask apart
from being able to recover the light field. Passive ranging through
coded apertures has also been studied in the context of both wave-
front coding [Johnson et al. 2000] and traditional lens based sys-
tem [Farid and Simoncelli 1998].

Several deblurring and deconvolution techniques have also been
used to recover higher spatial frequency content. Such techniques
include extended DOF images by refocusing a light field at multi-
ple depths and applying the digital photomontage technique (Agar-
wala et al. [2004]) and fusion of multiple blurred images ([Haeberli
1994]).

2. Basics

For visualization purposes, we consider a 2D light field space (LS),
with one spatial dimension x and one angular dimension θ and a 1D
detector as shown in Figure 3. We denote variables by lower case
letters and their corresponding Fourier domain representations by
upper case letters. Let l(x,θ) denote the 2D light field parameter-
ized by the twin plane parameterization as shown in Figure 3. The
θ -plane is chosen to be the plane of the main lens (or the aperture
stop for cameras composed of multiple lens) of the camera. For
the case of planar Lambertian object, we assume that the x-plane
coincides with the object plane.

2.1. Effects of Optical Elements on the Light Field

We now discuss the effect of various optical elements such as lens,
aperture and sensor to the 2D light field in frequency domain, which
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Figure 3: Encoded blur camera. (Top) In ray-space, focused scene
rays from a scene point converge through lens and mask to a point
on sensor. Out of focus rays imprint mask pattern on the sensor
image. (Bottom) In Fourier domain. Lambertian scenes lack θ
variation & form a horizontal spectrum. Mask placed at the aperture
lacks x variation & forms a vertical spectrum. The spectrum of the
modulated light field is a convolution of two spectrums. A focused
sensor measures a horizontal spectral slice that tilts when out-of-
focus.

we refer as Fourier domain light field space (FLS). The (x,θ) space
is referred to as the primal domain.

Sensor: The image formed on a 1D sensor is a 1D projection of
the 2D light field entering the camera, which also corresponds to
a slice of the light field in Fourier domain. For different focus
settings, the obtained images correspond to slices at different an-
gles/trajectories [Ng 2005].

Lens: A thin lens shifts the x-plane of the light field to the conjugate
plane according to the thin-lens equation. The lens also inverts the
x-plane of the light field.

Aperture: The aperture of a camera acts as a limiter, allowing only
the light rays that pass through the aperture to enter the camera. The
light field l after passing through the aperture is given by

la(x,θ) = l(x,θ)a(x,θ), (1)

where a(x,θ) is the aperture modulation function given by

a(x,θ) = rect( θ
2θ0

), and 2θ0 is the size of the aperture. From (1),

the Fourier transform of the light field after the aperture is given by

LA( fx, fθ ) = L( fx, fθ )⊗A( fx, fθ ), (2)

where ⊗ denotes convolution. L and A are the Fourier transforms
of the light field (before the aperture) and the aperture modulation
function respectively. Since a(x,θ) is a rect function,

A( fx, fθ ) = 2a0sinc(2a0 fθ ). (3)

2.2. FLS and Information Content in the Light Field

A light field is a 4D representation of the light rays in the free-
space. A 2D sensor can only sample a 2D slice of this light field.
Depending on the scene, the information content in the light field is
concentrated in different parts of the light field.

2.2.1. Planar Lambertian Object

Let us assume that the scene being imaged consists of a planar Lam-
bertian object at the focus plane. Since there are no angular varia-
tions in the irradiance of rays from a Lambertian object, the infor-
mation content of its light field is restricted to be along the fx axis



(Figure 3). Thus, L( fx, fθ ) = 0,∀ fθ �= 0. Since L( fx, fθ ) is inde-
pendent of fθ and A( fx, fθ ) is independent of fx, from (2) and (3)
we obtain,

LA( fx, fθ ) = L( fx, fθ )⊗A( fx, fθ ), (4)

= L( fx,0)A(0, fθ ), (5)

= 2a0L( fx,0)sinc(2a0 fθ ). (6)

The sensed image is a slice of this modulated light field. When the
sensor is in focus, all rays from a scene point converge to a sensor
pixel. Thus, the in-focus image corresponds to a slice of LA( fx, fθ )
along fx ( fθ = 0). Let y(s) and Y ( fs) denotes the sensor observation
and its Fourier transform respectively. For an in-focus sensor

Y ( fs) = LA( fs,0) = 2a0L( fs,0). (7)

Thus, no information is lost when the Lambertian plane is in focus.

When the sensor is out of focus, the sensor image is a slanted slice
of the modulated light field as shown in Figure 3, where the slant
angle λ depends on the degree of mis-focus. Thus,

Y ( fs) = LA( fs cosλ , fs sinλ ),

= 2a0L( fs cosλ ,0)sinc(2a0 fs sinλ )
(8)

Thus, for out of focus setting, the light field gets attenuated by the
frequency transform of the aperture modulation function, which is a
sinc function for an open aperture. This explains the attenuation of
the high spatial frequencies in the captured signal when the scene
is out of focus. Thus, we need to modify the aperture so that the
resulting aperture modulation function has a broadband frequency
response, ensuring that high spatial frequencies are preserved in out
of focus images.

Incidentally, for a pinhole camera, the aperture function is a Dirac
delta function and the aperture modulation function is broadband
in fθ . This explains why the images captured via a pinhole camera
are always in-focus. However, a pinhole camera suffers from severe
loss of light, reducing the signal to noise ratio (SNR) of the image.
In Section 4, we show that one can use a carefully selected mask to
perform the function of a broadband modulator of the light field in
fθ and realize greater DOF for Lambertian scenes, while increasing
the amount of light captured as compared to a pinhole.

2.2.2. Bandlimited Light Fields

For general scenes, we assume that the light field is bandlimited to
fx0 and fθ0 as shown in Figure 5: L( fx, fθ ) = 0 ∀| fx| ≥ fx0, | fθ | ≥
fθ0. A traditional camera can only take a 2D slice of the 4D light
field. To recover the entire information content of the light field, we
need to modulate the incoming light field so as to redistribute the
energy from the 4D FLS to the 2D sensor.

3. Heterodyne Light Field Camera

In this section, we show that the required modulation can be
achieved in frequency domain by the use of an appropriately chosen
2D mask placed at an appropriate position between the lens and the
sensor. Although a mask is only a 2D modulator, in tandem with
the lens, it can achieve the desired 4D modulation. We believe that
this is the first design of a single-snapshot light field camera that
does not use any additional lenses or other refractive elements.

3.1. Modulation Theorem and its Implications

According to the modulation theorem [Oppenheim et al. 1999],
when a baseband signal s(x) is multiplied by a cosine of frequency
f0, it results in copies of the signal at that frequency.

F[cos(2π f0x)s(x)]( fx) =
1

2
(F( fx − f0)+F( fx + f0)), (9)
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Figure 4: Heterodyne light field camera. (Top) In ray-space, the co-
sine mask at d casts soft shadows on the sensor. (Bottom) In Fourier
domain, scene spectrum (green on left), convolved with mask spec-
trum (center) made of impulses creates offset spectral tiles (right).
Mask spectral impulses are horizontal at d = 0, vertical at d = v, or
tilted.

where F[s(x)]( fx) = F( fx) denotes the Fourier transform of s(x).
This principle has been widely used in telecommunications and ra-
dio systems. The baseband signal is modulated using a carrier sig-
nal of much higher frequency so that it can be transmitted over long
distances without significant loss of energy. The receiver demodu-
late the received signal to recover the baseband signal. In essence,
what we wish to achieve is very similar. We would like to modulate
the information in the angular variations of the light field ( fθ fre-
quencies) to higher frequencies in fx so that the high resolution 1D
sensor may be able to sense this information.

Figure 5 shows a bandlimited light field in frequency domain. For
simplicity, let us assume the x plane to be the conjugate plane, so
that the sensor image corresponds to a slice along fx (horizontal
slice). Now consider a modulator whose frequency response is
composed of impulses arranged on a slanted line as shown in Fig-
ure 5. If the light field is modulated by such a modulator, each
of these impulses will create a spectral replica of the light field at
its center frequency. Therefore, the result of this convolution will
be several spectral replicas of the light field along the slanted line.
The elegance of this specific modulation is that the horizontal slice
(dashed box) of the modulated light field spectrum now captures all
the information in the original light field. Note that the angle α is
designed based upon the required frequency resolution in θ and x,
and the bandwidth of the incoming light field.

Heterodyne receivers in telecommunications demodulate the in-
coming signal to recover the baseband signal. In our case, demod-
ulation must also redistribute the energy in the sensed 1D signal
to the 2D light field space. The process of demodulation consists
of rearranging the frequency response of the sensor to recover the
bandlimited light field as shown in Figure 5.

3.2. Mask based Heterodyning

Now we show that the required modulation can be achieved by plac-
ing a suitably chosen attenuating mask in the optical path of a con-
ventional camera.

Masks as Light Field Modulators: A mask is essentially a spe-
cial 1D code c(y) (2D for 4D light field) placed in the optical path.
In flatland, although the mask is 1D, its modulation function is 2D
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Figure 6: Ray space and Fourier domain illustration of light field
capture. The flatland scene consists of a dark background planar
object occluded by a light foreground planar object. In absence of
a mask, the sensor only captures a slice of the Fourier transform of
the light field. In presence of the mask, the light field gets modu-
lated. This enables the sensor to capture information in the angular
dimensions of the light field. The light field can be obtained by re-
arranging the 1D sensor Fourier transform into 2D and computing
the inverse Fourier transform.

(Figure 4). The mask affects the light field differently depending
on where it is placed. If the mask is placed at the aperture stop (θ
plane), then the effect of mask is to multiply the aperture modula-

tion function by the mask modulation function. The mask modula-
tion function m(x,θ) is then given by m(x,θ) = c(y = θ), i.e., the
modulation function is independent of x. Intuitively, when placed at
the θ -plane, the mask affects all rays at an angle θ in similar way,
independent of the scene point from which they are originating.

If the mask is placed at the conjugate plane, it attenuates all rays
(independent of θ ) for same x equally. This is because at the con-
jugate plane, all rays originating from a point on the plane of focus
converge to a single point. Thus, the mask modulation function
changes to m(x,θ) = c(y = x).

Thus, we see that the modulation function corresponding to placing
the same code at the aperture and the conjugate plane are related by
a rotation of 90◦ in the 2D light field space. Moreover, as the 1D
code is moved from the aperture plane to the plane of the sensor,
the resulting mask modulation function gets rotated in 2D as shown
in Figure 4.

If the mask c(y) is placed at a distance d from the conjugate plane,
the mask modulation function is given by

M( fx, fθ ) = C( fx csc(α))δ ( fθ − fx tanα), (10)

where C denotes the Fourier transform of the 1D mask and v is the
distance between the aperture and the conjugate plane. The angle
α is given by

α =
d

v

π

2
. (11)

In other words, the mask modulation function has all its energy
concentrated on a line in the 2D FLS space. The angle α of this
line with respect to the fx axis depends upon the position of the
mask. When the mask is placed at the conjugate plane (d = 0), the
angle α is equal to 0. As the mask moves away from the conjugate
plane towards the aperture, this angle increases linearly to 90◦ at
the aperture plane as shown in Figure 4,

Optimal Mask Position: In order to capture the 2D light field, we
need the modulation function M( fx, fθ ) to be a series of impulses
at an angle α given by

α = arctan
2 fx0

fθR

, (12)

where fx0 is the bandwidth of the light field along the fx axis and
fθR represents the desired frequency resolution along the fθ axis.
For example, in Figure 5, the frequency resolution has been de-
picted as being equal to fθR = (2/5) fθ0, where fθ0 is the band-
width of the light field along the fθ axis. Thus, for capturing a light
field of a given bandwidth, the physical position of the mask can be
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calculated from (12) and (11). In practice, since the spatial resolu-
tion is much larger than the angular resolution, α is very small, and
therefore the mask needs to be placed close to the sensor.

Optimal Mask Pattern: To achieve M( fx, fθ ) as a set of 1D im-
pulses on a slanted 2D line, the Fourier transform C( f ) of the 1D
mask should be a set of impulses. Let 2p+1 be the number of im-
pulses in M( fx, fθ ). The Fourier transform of the 1D mask is then
given by

C( f ) =
k=p

∑
k=−p

δ ( f − k f0), (13)

where f0 denotes the fundamental frequency and is given by f0 =√
4 fx0

2 + fθR
2. From Figure 5, (2p + 1) fθR = 2 fθ0. The band-

width in fθ is discretized by fθR. Hence, the number of angular

samples obtained in the light field will be equal to
2 fθ

fθR
= 2p + 1.

Since the Fourier transform of the optimal mask is a set of sym-
metric Dirac delta functions (along with DC), this implies that the
physical mask is a sum of set of cosines of a given fundamental fre-
quency f0 and its harmonics. The number of required harmonics is
in fact p, which depends upon the band-width of the light field in
the fθ axis and the desired frequency resolution fθR.

Solving for 2D Light Field: To recover the 2D light field from
the 1D sensor image, we compute the Fourier transform of the sen-
sor image, reshape the 1D Fourier transform into 2D as shown in
Figure 5 and compute the inverse Fourier transform. Thus,

l(x,θ) = IFT(reshape(FT(y(s)))), (14)

where FT and IFT represent the Fourier and inverse Fourier trans-
forms respectively, and y(s) is the observed sensor image. Figure 6
shows a simple example of light field capture where the scene con-
sists of a dark background plane occluded by a light foreground
plane.

3.3. Note on 4D Light Field Capture

Even though the analysis and the construction of mask-based het-
erodyning for light field capture was elucidated for 2D light fields,
the procedure remains identical for capturing 4D light fields with
2D sensors. The extension to the 4D case is straightforward. In
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Figure 8: (Top Left) Magnitude of the 2D Fourier transform of the
captured photo shown in Figure 1. θ1,θ2 denote angular dimen-
sions and x1,x2 denote spatial dimensions of the 4D light field. The
Fourier transform has 81 spectral tiles corresponding to 9× 9 an-
gular resolution. (Bottom Left) A tile of the Fourier transform of
the 4D light field corresponding to fθ1 = 1, fθ2 = 1. (Top Right)
Refocused images. (Bottom Right) Two out of 81 views. Note
that for each view, the entire scene is in focus. The horizontal line
depicts the small parallax between the views, being tangent to the
white circle on the purple cone in the right image but not in the left
image.

case of a 4D light field, the information content in the 4D light field
is heterodyned to the 2D sensor space by the use of a 2D mask
placed between the aperture and the sensor. The Fourier transform
of the 2D mask would contain a set of impulses on a 2D plane.

C( f1, f2) =
k1=p1

∑
k1=−p1

k2=p2

∑
k2=−p2

δ ( f1 − k1 f x
0 , f2 − k2 f

y
0 ). (15)

Since negative values in the mask cannot be realized as required,
we need to boost the DC component of C( f1, f2) so as to make the
mask positive throughout. Figure 7 shows a part of the 2D cosine
mask we used for experiments, along with the plot of one of its
scanline. This 2D mask consists of four harmonics in both dimen-
sions (p1 = 4, p2 = 4) with fundamental frequencies f x

0 and f
y
0 be-

ing equal to 1 cycle/mm. This allows an angular resolution of 9×9
in the 4D light field. Figure 8 shows the magnitude of the Fourier
transform of the captured photo of the cones (as shown in Figure 1).
The Fourier transform clearly shows 9×9 spectral tiles created due
to the modulation by the mask. These spectral tiles encode the in-
formation about the angular variation in the incident light field. To
recover the 4D light field, demodulation involves reshaping of the
sensor Fourier transform in 4D. Let t1 = 2p1 +1 and t2 = 2p2 +1 be
the number of angular samples in the light field and let the captured
2D sensor image be N ×N pixels. We first compute the 2D FFT of
the sensor image. Then we rearrange t1 × t2 tiles of the 2D Fourier
transform into 4D planes to obtain a (N/t1)× (N/t2)× t1 × t2 4D
Fourier transform. Inverse FFT of this 4D Fourier transform gives
the 4D light field. In Figure 1, using a 1629∗2052 pixel image cap-
tured with a cosine mask having four harmonics, we obtain a light
field with 9×9 angular resolution and 181×228 spatial resolution.

3.4. Aliasing

Traditionally, undersampling results in masquerading of higher fre-
quencies as lower frequencies in the same channel and leads to vi-



Figure 9: Our heterodyne light field camera can be used to refocus
on complex scene elements such as the semi-transparent glass sheet
in front of the picture of the girl. (Left) Raw sensor image. (Mid-
dle) Full resolution image of the focused parts of the scene can be
obtained as described in Section 3.6. (Right) Low resolution refo-
cused image obtained from the light field. Note that the text on the
glass sheet is clear and sharp in the refocused image.

sually obtrusive artifacts like ghosting. In heterodyne light field
camera, when the band-limit assumption is not valid in the spa-
tial dimension, the energy in the higher spatial frequencies of the
light field masquerade as energy in the lower angular dimensions.
No purely spatial frequency leaks to other purely spatial frequency.
Thus, we do not see familiar jaggies, moire-like low-frequency ad-
ditions and/or blocky-ness in our results. The effect of aliasing is
discussed in detail in [Veeraraghavan et al. 2007], where using the
statistics of natural images, it is shown that the energy in the alias-
ing components is small. To further combat the effects of aliasing,
we post-filter the recovered light field using a Kaiser-Bessel filter
with a filter width of 1.5 [Ng 2005].

3.5. Light Field based Digital Refocusing

Refocused images can be obtained from the recovered Fourier
transform of the light field by taking appropriate slices [Ng 2005].
Figure 1 and Figure 8 shows refocused cone images. The depth
variation for this experiment is quite large. Notice that the orange
cone in the far right was in focus at the time of capture and we
are able to refocus on all other cones within the field of view. Fig-
ure 10 shows the performance of digital refocusing with varying
amounts of blur on the standard ISO-12233 resolution chart. Using
the light field, we were able to significantly enhance the DOF. It is
also straightforward to synthesize novel views from the recovered
light field. Two such views generated from the recovered light field
are also shown in the bottom right part of Figure 8. The horizontal
line on the images depicts small vertical parallax between the two
views. Digital refocusing based on recovered light fields allow us
to refocus even in the case of complicated scenes such as the one
shown in Figure 9. In this example, a poster of the girl in the back
is occluded by a glass sheet in front. Notice that the text ’Mask
based Light Field’ written on the glass sheet is completely blurred
in the captured photo. By computing the light field, we can digitally
refocus on the glass sheet bringing the text in focus.

3.6. Recovering High Resolution Image for Scene Parts

in Focus

Our heterodyne light field camera has an added advantage that we
can recover high resolution information for the in-focus Lamber-
tian parts of the scene. Consider a scene point that is in sharp focus.
All rays from this scene point reach the same sensor pixel but are
attenuated differently due to the mask. Therefore, the sensor pixel
value is the product of the scene irradiance and the average value
of the mask within the cone of rays reaching that pixel. This atten-
uation γ(x,y) varies from pixel to pixel and can either be computed
analytically or recovered by capturing a single calibration image

Figure 10: Analysis of the refocusing ability of the heterodyne light
field camera. (Left) If the resolution chart is in focus, one can obtain
a full resolution 2D image as described in Section 3.6, along with
the 4D light field. (Middle) We capture out of focus chart images for
three different focus settings. (Right) For each setting, we compute
the 4D light field and obtain the low resolution refocused image.
Note that large amount of defocus blur can be handled.

of a uniform intensity Lambertian scene. We can recover the high
resolution image I(x,y) of the scene points in focus as

I(x,y) = s(x,y)/γ(x,y), (16)

where s(x,y) is the captured sensor image. Parts of the scene that
were not in focus at the capture time will have a spatially varying
blur in I(x,y). We use the image of a uniform intensity Lambertian
light box as γ .

In Figure 1, zoomed in image region shows the attenuation of the
sensor image due to the cosine mask. The recovered high resolu-
tion picture is also shown in Figure 1 and the inset shows the fine
details recovered in the parts of the image that were in focus. Fig-
ure 10 shows the recovered high resolution picture of a resolution
chart that was in focus during capture. This ability to obtain high
resolution images of parts of the scene along with the 4D light field
makes our approach different from previous light field cameras.

4. Encoded Blur Camera

In the previous section, we discussed a design for a light field cam-
era with the aid of an attenuating mask. In this section, we look
at a very specific sub-class of light fields; those that results from
layered Lambertian scenes. For such scenes we show that using a
broadband mask at the aperture is a very powerful way of achieving
full-resolution digital refocusing. In conventional cameras, photog-
raphers can control the DOF by controlling the size of the aperture.
As the aperture size decreases, the DOF of the camera increases
proportionally, but the SNR decreases due to the loss of light. In
Section 2.2.1, we showed that an open aperture suppresses high
spatial frequencies in the out of focus image. To preserve high spa-
tial frequencies, we place a physical mask at the aperture whose
frequency response is broadband as shown in Figure 2.

For a mask placed at the aperture, M( fx, fθ ) has all its energy con-
centrated along fθ direction from (10). Thus, M( fx, fθ ) = 0,∀ fx �=
0. The frequency transform of the mask modulated light field is

LM( fx, fθ ) = L( fx, fθ )⊗M( fx, fθ ). (17)

Since for a Lambertian scene, L( fx, fθ ) = 0,∀ fθ �= 0, the above
equation simplifies to LM( fx, fθ ) = L( fx,0)M(0, fθ ). Thus, the
mask modulation function gets multiplied by the frequency trans-
form of the light field. In primal domain, this is equivalent to a con-
volution of the mask and the sharp image of the scene. The scale



Figure 11: PSF estimation. (Left) Captured photo. (Middle) Initial crude segmentation of the scene based on the error maps indicate two
dominant layers (person and painting) apart from homogeneous regions with scales 7 and 4 respectively. (Right) Final labeling for refocused
image on the person by composing I7, reblurred I4 and the captured blurred image.

of the mask is dependent on the degree of defocus blur. The sharp
image can be recovered by deconvolution of the blurred image with
the scaled mask. The same conclusion may also be reached from
ray based analysis of the captured photo.

4.1. Optimal Mask for Encoding Defocus Blur

Since the frequency transform of the light field gets multiplied by
the mask modulation function, the optimal mask is the one which
is broadband in frequency domain. Broadband masks popularly
known as MURA codes have been used in lens-less coded aper-
ture imaging in astronomy. However, a lens based coded aperture
is significantly different from traditional lens-less coded aperture.
In traditional coded aperture imaging, every scene element is cir-
cularly convolved with the mask. Instead, for a lens based coding,
the observed image is a linear convolution of the sharp image with
the defocus point spread function (PSF). Since linear convolution is
equivalent to circular convolution with zero padded kernel, the op-
timal mask for lens based coded aperture is different from MURA.
This was also observed by Raskar et al. [2006] in searching for an
optimal 1D broadband code in the context of motion deblurring.
Moreover, coded aperture imaging in astronomy can improve SNR
only for point like sources such as stars and give no additional bene-
fit over pin-holes for area light sources [Accorsi et al. 2001]. Hence
it is not suitable for photography of natural scenes.

For the problem of motion deblurring, Raskar et al. [2006] per-
formed a brute force linear search for obtaining the best 1D binary
code. The code selection was based on maximizing the minimum
of the DFT magnitudes of the zero padded code. Here we show that
continuous valued codes can give superior performance compared
to binary codes, with the advantage of significantly reducing the
search time. We find the continuous valued code by gradient de-
scent optimization (using Matlab function fmincon) based on the
same selection criteria as above. A sub-optimal binary code (such
as MURA) can be provided as the initial guess. Figure 7 shows a
7×7 binary mask obtained after 10 machine hours of search along
with a continuous valued mask obtained within few minutes of op-
timization. Using the noise analysis presented in Section 5, the
deconvolution noise for the continuous valued code is smaller by
7.3dB compared to the binary code.

4.2. Deconvolution based Digital Refocusing

We achieve full resolution digital refocusing from a single encoded
out of focus image using image deconvolution techniques. Defo-
cus blur in the captured photo is related to the depth of the scene.
Although depth from defocus [Chaudhuri and Rajagopalan 1999]
is an active area of research in computer vision, computing a depth
map from a single defocused image is challenging, unless a pri-
ori knowledge about the scene is assumed or learning based ap-
proaches are used. Instead, we assume that the scene is made up of
n distinct layers, where n is a small number and the defocus point
spread function (PSF) within each layer is spatially invariant. This
assumption works well for a variety of scenes. We also assume that

the maximum blur diameter in the image can be T pixels.

We achieve refocusing in two steps. First, we analyze the scene
and estimate the number of layers and the scale of the PSF for each
layer automatically. We then generate n deblurred images, I1 . . . In,
by deconvolving the captured blurred image by the estimated blur
kernels. To refocus at a layer i, we reblur the remaining n− 1 im-
ages according to the difference of their blur from the blur of layer i
and then composite Ii and the reblurred images to get the refocused
image.

4.2.1. PSF Estimation

Let m(x,y) denote the w×w 2D mask placed in the aperture. For
simplicity, assume that the entire image has a single layer with a
defocus blur width of k pixels. The captured photo B is related to
the sharp image I via convolution as

B(x,y) = I(x,y)∗m(kx/w,ky/w)+η , (18)

where η denote the measurement noise. Given I, the likelihood
error can be written as

el(x,y) = (B(x,y)− I(x,y)∗m(kx/w,ky/w))2. (19)

However, this error itself is not sufficient to uniquely determine I
and k because el(x,y) can be made equal to zero by assuming B = I.
To resolve this ambiguity, we use the statistics of natural images. It
has been shown that real-world images obey heavy tail distributions
in their gradients [Field 1994]. In a blurred image, since high spa-
tial gradients are suppressed, the tail of the gradient distribution will
be suppressed. We use the fourth-order moment (kurtosis) of gra-
dients as a statistic for characterizing the gradient distribution. The
kurtosis will be small for blurred image gradients as compared to
sharp image gradients. At every pixel, we define the gradient error,
eg(x,y), using the kurtosis of gradients within a small neighborhood
R around that pixel.

eg(x,y) = −(kurtosis({Ix(x,y)}R)+ kurtosis({Iy(x,y)}R), (20)

where Ix, Iy denote the spatial gradients of I. However, deblurring at
an incorrect scale larger than the correct scale k introduces high fre-
quency deconvolution artifacts in I. This may increase the gradient
kurtosis, thereby decreasing eg. Thus, the two error measures com-
pete with each other. To locate the correct scale, we minimize the
combined error e(x,y) = el(x,y)+βeg(x,y), where β is a constant.

In the presence of multiple (n) layers, we deblur the given image
using blur kernels of different sizes, ranging from 1 to T pixels.
For each of these T deblurred images, we compute the error map

e(x,y). For a layer with correct scale k, the kth error map should
have the smallest values for the region corresponding to that layer
among all the error maps. This is equivalent to a discrete labeling
problem for each pixel with T labels. The labeling cost at a pixel

(x,y) for a given label k is given by ek(x,y). We solve this label-
ing problem using the alpha-expansion graph-cut procedure (and



Figure 12: Full resolution digital refocusing using encoded blur camera. (Left) Captured photo where both the person in front and the painting
are blurred. (Middle) Refocused image, the person has been brought into focus. (Right) Since the defocus PSF is made broadband by inserting
a broadband mask in the aperture, deconvolution can recover fine features such as the glint in the eye and the hair strands.

software) by Boykov et al. [2001]. Since homogeneous regions in
the image do not contain any blur information, we set the data cost
for homogeneous regions to be zero, so that they get filled-in for
each layer during graph cut optimization. We remove spurious lay-
ers having less than 10% of the total number of pixels in the image
and perform simple morphological operations (hole filling) on the
labels. Figure 11 shows a captured blurred image (person out of
focus) and the resulting labeling indicating that the scene has two
dominant layers (blue and green), apart from the homogeneous re-
gions (yellow). This procedure only gives a crude segmentation of
the scene in terms of layers and the corresponding scales. The exact
boundaries between the layers are not obtained, but the interiors of
the layers are labeled properly. This kind of labeling can also be
obtained from a simple user interaction, where the user scribbles
on the region corresponding to each layer in the correct deblurred
image for that layer, given a set of T deblurred images.

4.2.2. Synthesizing Refocused Image

Since the scene has n layers, we only need to consider the n de-
blurred images (I1 . . . In) at the corresponding scales. We use the
labeling in the interior from the previous step to build color his-
tograms for each layer (each channel is treated separately) from the
corresponding deblurred image. We also build histogram for ho-
mogeneous regions external to all the layers using the given blurred
image. To refocus on a layer i, we reblur each of the n−1 images,
I1, . . . Ii−1, Ii+1 . . . In according to their scale difference from layer
i. Finally, the refocused image is composed from Ii and the n− 1
reblurred images. Again, this can be treated as a labeling problem
and we use the procedure described in [Agarwala et al. 2004] to
create the composite1. The data cost at each pixel is chosen as max-
imum likelihood using the color histograms and the seam objective
is based on matching colors and gradients as described in [Agar-
wala et al. 2004]. Figure 11 also shows the final labeling.

4.3. Results

Figure 12 shows the full resolution refocused result, where the per-
son in front has been brought into focus. Notice the glint in the
eye of person and the fine hair strands have been recovered during
deblurring.

Refocusing in Presence of Partial Occluders: Image completion
and other hallucination techniques are used to fill in missing or un-
wanted regions of the image. However, such techniques may not
work on out of focus blurred images. Since the hallucinated pixel
values are not modeled according to the defocus blur, deblurring on
such images will produce artifacts. Figure 13 shows such a scenario
where the fence is in sharp focus and the person behind the fence
is out of focus. Deblurring the image without taking the occluders

1The captured blurred image is also used in the composite for homoge-

neous regions.

Figure 13: Deblurring in presence of partial occluders. (Top Left)
Blurred photo of a person occluded by the in-focus fence. (Top
Right) Deblurring without taking the occluders into account results
in artifacts. (Bottom Left) Binary mask for the occluders. (Bottom
Right) By solving the weighted deconvolution equation, one can
remove these artifacts.

into account will produce artifacts as shown. Since blurring dis-
tributes the information to neighboring pixels, we can recover the
sharp image if the blur size is larger than the occluder size. Given a
mask for the occluded pixels, we perform a weighted deconvolution
of the image by solving

WAx = Wb, (21)

where b is the vectorized blurred image, A is the block-Toeplitz
matrix representing 2D blurring and W is a weighting matrix that
sets the weights corresponding to the occluded pixels in the blurred
image to zero. In Figure 13, after obtaining the sharp image, we
composite it with the sharp image of the fence, to bring both the
person and fence in focus. Note that the mask for occluder can be
over-estimated, as long as the blur is large enough.

Spatially Varying PSF: Figure 14 shows a tilted book with spa-
tially varying defocus blur. To obtain an all in focus image, we
fuse the deblurred images I1 . . . IT . We click on four points on the
blurred image to estimate the homography of the book and estimate
the PSF scale at each pixel using the scale at end points and the
homography parameters. The deblurred images are then combined



Figure 14: Spatially varying PSF can be handled for planar scenes
using homography. Shown is an all focus composite obtained by
fusing deblurred images at varying scales appropriately.
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Figure 15: (Left) Comparison of the MTF of the lens in focus, and
out of focus with and without the mask in the aperture. By putting
the mask in the aperture, the MTF improves for out of focus lens.
(Right) Noise analysis of the linear system for deblurring shows that
the resulting linear system when using the mask is stable compared
to that of the open aperture.

according to the spatially varying scale to obtain the all in focus
image. Note that the word ’ARCHITECTURE’ cannot be read in
the blurred image but is sharp in the result.

5. Implementation and Analysis

Heterodyne Light Field Camera: We build a large format cam-
era using a flatbed scanner (Canon CanoScan LiDE 70) similar
to [Wang and Heidrich 2004; Yang 2000] and place a 8×10 inch2

mask behind the scanner glass surface. The mask was printed at a
resolution of 80 dots/mm using Kodak LVT continuous tone film
recorder (BowHaus Inc.). The scanner itself was then placed on
the back of a large format view camera fitted with a 210 mm f/5.6
Nikkor-W lens as shown in Figure 2. In practice, the motion of
the scanner sensor is not smooth leading to pattern noise (horizon-
tal/vertical lines) in the captured photo. This may lead to some ar-
tifacts in the recovered light fields. However, many of these issues
will disappear with a finer mask placed inside a conventional dig-
ital camera. Calibration involves accounting for the in-plane rota-
tion and shift of the mask with respect to the sensor which manifest
as search for the rotation angle of the captured 2D image and the
phase shift of the Fourier transform. Since the computation of the
light field and refocusing is done in Fourier domain, computational
burden is low.

Figure 16: Comparison of traditional focus deblurring with a mask
in the aperture. (Top) Captured blurred photo and the deblurred
image for open aperture. (Bottom) Captured blurred photo and the
deblurred image using the 7×7 mask in the aperture.

Encoded Blur Camera: Figure 2 shows the prototype for encoded
blur camera for extending the DOF. We use a Canon Rebel XT SLR
camera with a Canon EF 100 mm f/2.8 USM Macro lens. We cut
open the lens in the middle at the aperture and place a mask as
shown in Figure 2. To avoid diffraction blur, we restrict ourselves
to a low resolution 7×7 mask.

Figure 15 shows the effect of putting a mask in the aperture plane on
the modulation transfer function (MTF) of the optical system. We
capture out of focus images of the standard resolution chart ISO-
12233 and use imatest software [Imatest ] to compute the MTF.
Figure 15 shows how the MTF degrades when the lens is out of fo-
cus, compared to the in-focus MTF. For an open aperture (box blur),
the MTF degrades sharply and has zeros corresponding to certain
spatial frequencies depending on the amount of defocus. Using a
broadband mask in the aperture improves the MTF, especially for
high spatial frequencies, facilitating the recovery of those frequen-
cies.

Since deblurring can be represented as a linear system, standard co-
variance analysis can be used to analyze deconvolution noise. For
a linear system Ax = b, assuming zero mean Gaussian IID noise in
b with variance σ2, the covariance matrix Σ of the estimated x̂ is
given by Σ = σ2(AT A)−1. Thus, the mean square error (MSE) in-

creases by a factor of f = trace(Σ)/N2 = trace(AT A)−1/N2,

where N2 is the number of pixels in x. Since A is of size N2 ×N2,
it is not possible to obtain f analytically. We empirically estimate
f by deblurring a noisy blurred synthetic image and comparing the
result with the ground truth. The MSE was averaged over 1000
trials. Figure 15(b) shows the plot of f in db for different values
of blur using the 7× 7 mask and open aperture of the same size.
For a 7 pixel blur, the open aperture leads to noise amplification by
58.02 dB, whereas by using the mask, it is reduced to 20.1db. Reg-
ularization algorithms such as Richardson-Lucy [Richardson 1972;
Lucy 1974] are used to reduce noise in conventional deblurring but
also results in loss of details as show by the comparisons in Fig-
ures 16. Note that the high spatial frequencies and details are re-
covered when using the mask as compared to open aperture.



Figure 17: (Top Row) Blurred photo of the ISO-12233 chart cap-
tured using the 7× 7 mask in the aperture and the corresponding
deblurred image. (Bottom Row) Using a 25×25 mask for the same
aperture size results in artifacts due to diffraction.

As the mask resolution increases, each cell of the mask becomes
smaller for the same aperture size. Thus, diffraction starts playing
a role and deblurring using a high resolution masks shows artifacts.
Figure 17 shows the deblurred images of the ISO-12233 chart cap-
tured using masks of different resolution for the same out-of-focus
lens setting. Note that the deblurred image has color artifacts due
to diffraction when using 25×25 mask.

Failure Cases: The encoded blur camera assumes a layered Lam-
bertian scene. Thus, scenes with large variation in depths and those
with view dependencies and specularities cannot be handled. In
practice, the 7×7 mask gives good deblurring result up to blur size
of ≈ 20 pixels. To handle large defocus blur, one should use a finer
resolution mask but that may lead to diffraction blur. Layers with
overlapping high frequency textures shows deblurring artifacts due
to the lack of accurate modeling of the seam layers. Matting based
approaches may be combined with deblurring to handle such cases.
The heterodyne light field camera assumes a bandlimited light field.
When this assumption is not true, it leads to aliasing artifacts in the
recovered light field. To recover larger angular resolution in the
light field, the 2D cosine mask needs to be moved away from the
sensor, which might result in diffraction.

6. Discussion

Future Directions: To capture the light field, we need to use masks
that match the resolution of the sensor. It is already possible to
print RGB Bayer mosaics at pixel resolution. This is ideal for the
future trend of digital cameras where pixels are becoming smaller to
achieve higher resolution. Such high resolution masks will support
heterodyning as well as Bayer mosaic operations in a single mask.
Our current masks are effectively 2D in a 4D space, but in the future
one may use masks that are angle and location dependent like a
hologram to achieve a complete 4D effect. We hope our work in
broadband and cosine masks will also stimulate more ideas in mask
functions including colored and polarized masks to estimate scene
properties.

Our broadband coding can be pushed in higher dimension, for ex-
ample, by coding both in time [Raskar et al. 2006] and space. The
benefit of masks compared to lenses is the lack of wavelength de-
pendent focusing and chromatic aberrations. This fact is commonly
used in astronomy. Hence, masks can be ideal for hyper-spectral
imaging. Shallow depth of field is a serious barrier in medical and
scientific microscopy. The facility to refocus while maintaining full
resolution will be a great benefit. In combination with confocal

coded aperture illumination one maybe able to capture digitally re-
focused images in a fewer incremental steps of the focal planes.

Conclusions: We showed that two different kinds of coded masks
placed inside a conventional camera will each allow us to make a
different kind of computational improvement to the camera’s pic-
tures. First, if we place a fine, narrowband mask slightly above the
sensor plane, then we can computationally recover the 4D light field
that enters the main camera lens. The mask preserves our camera’s
ability to capture the focused part of the image at the full resolu-
tion of the sensor, in the same exposure used to capture the 4D light
field. Second, if we place a coarse, broadband mask at the lens
aperture, we can computationally refocus an out of focus image at
full resolution. As this refocusing relies on deconvolution, we can
correct the focusing for images that require constant or piecewise-
planar focusing. These and other masks are not magical: mask re-
duces sensor illumination by ≈ 1 f-stop and refocusing exacerbates
noise. However, high-quality masks may be less demanding than
lens arrays to mount, align, or arrange in interchangeable sets and
they avoid optical errors such as radial error, spherical and chro-
matic aberration, and coma. We believe that masks offer a promis-
ing new avenue for computational methods to substantially improve
digital photography.
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Appendix: Source Code

% Source Code for Computing 4D Light-Field from Captured 2D Photo
% Mask contains Cosines with 4 Harmonics leading to 9X9 Angular Samples

m = 2133; n=1719 % Size of Captured Image
nAngles = 9; cAngles = (nAngles+1)/2;  % Number of Angular Samples

F1Y = 237;  F1X = 191;  %Cosine Frequency in Pixels from Calibration Image

phi1 = 300;  phi2 = 150; % PhaseShift due to Mask In-Plane Transltn wrt Sensor
F12X = floor(F1X/2); F12Y = floor(F1Y/2);  

%Compute Spectral Tile Centers, Peak Strengths and Phase
for i=1:nAngles ;  for j=1:nAngles

CentY(i,j) = (m+1)/2 + (i-cAngles)*F1Y;CentX(i,j)  = (n+1)/2  + (j-cAngles)*F1X;

Mat(i,j) = exp(sqrt(-1)*((phi1*pi/180)*(i-cAngles) + (phi2*pi/180)*(j-cAngles))); 
end;  end

Mat(cAngles,cAngles) = Mat(cAngles,cAngles) * 20; 

f = fftshift(fft2(imread(‘InputCones.png’))); %Read Photo and Perform 2D FFT

%Rearrange Tiles of 2D FFT into 4D Planes to obtain FFT of 4D Light-Field
for i = 1: nAngles; for j = 1: nAngles

FFT_LF(:,:,i,j) =  f(CentY(i,j)-F12Y:CentY(i,j)+F12Y,…

CentX(i,j)-F12X:CentX(i,j)+F12X)/Mat(i,j);
end; end

LF     =    ifftn(ifftnshift(FFT_LF)); %Compute Light-Field by 4D Inverse FFT


